

MMME2046 Dynamics and Control: Lecture 1

Introduction to Machine Dynamics

Mikhail Matveev Mikhail.Matveev@Nottingham.ac.uk C27, Advanced Manufacturing Building, Jubilee Campus

Handouts Chapter I

MMME2046 Dynamics and Control Lecture 1

- Sum up the main **prerequisites** for Machine Dynamics part of MMME2046
- **Introduction** to Machine Dynamics
- **Revision** case studies

For your information

- Handouts are available online
- Slides will be made available on Moodle
- Four exercise sheets
- Solutions to exercise sheets will be on Moodle a week after the seminar
- Recommended textbook: Hibbeler R.C. "Engineering mechanics: Dynamics", chapters 16 and 17
- Coursework assignment (25%) Out on 27th October 2022 Submission: 1st December 2022

Prerequisites

Starting Point

Basic concepts of mechanics:

- Secondary school,
- MMME1028: Statics and Dynamics

Essential tools

- Newton's Laws,
- Free body diagrams,
- Particle kinematics and dynamics,
- Inertia properties of rigid bodies,
- Vectors and vector algebra

What is Machine Dynamics

Analysis and design of **rigid mechanisms** and structures in motion Examples: industrial robots, landing gears, wind turbines

Rigid Body definition

- System of particles
- Distances between particles remain unchanged
- Deformations are neglected

Particle − Rigid body − System of rigid bodies

The University of

UNITED KINGDOM · CHINA · MALAYSIA

System of rigid bodies - mechanism

Revision case studies

• Newton's 2nd Law / Free body diagrams,

• Vectors and vector algebra,

• Particle kinematics in circular motion

Case study 1: FBDs, Newton's 2nd Law

Draw FBDs for A, B and the horse. Calculate the force exercised by the horse as a function of the acceleration of mass B, a_B.

Assume that the ropes are under tension and massless pulley. Coefficient of friction is equal to μ.

Free Body Diagrams (FBDs)

The University of Newton's 2nd Law, Equations of motionNottingham UNITED KINGDOM · CHINA · MALAYSIA

However we assumed that $a_B=a_A=a_h=a$ (5)

Therefore: $F_{\sf Ah}$ =(m $_{\sf B}$ +m $_{\sf A}$)a+m $_{\sf B}$ g+ \upmu m $_{\sf A}$ g

MMME2046 Dynamics: Lecture 1

Notes on FBD and EOM

- FBD: Applied Forces + accelerations
- Action = -Reaction
- A particle can give 2 e.o.m towards any two selected directions.

Case study 2: Vector resolution

A 2D vector carried two pieces of information!!

Method 1: Geometrical

(1) $\underline{c} = \underline{a} + \underline{b}$ Given: $a = 5$ $\alpha = 20^{\circ}$ $b = ?$ $\beta = 15^{\circ}$

$$
c = ? \qquad \gamma = 25^{\circ}
$$

See Ch. I, pg.6

The University of Nottingham

UNITED KINGDOM · CHINA · MALAYSIA

Method 1: Geometric calculations

Check: $c^2 = a^2 + b^2 - 2ab \cos 95^\circ$

MMME2046 Dynamics: Lecture 1

Method 2: X and Y projections

$$
\underline{c} = \underline{a} + \underline{b} \tag{1}
$$

Given:
$$
a = 5
$$
 $\alpha = 20^{\circ}$

$$
b = ? \qquad \beta = 15^{\circ}
$$

$$
c = ? \qquad \gamma = 25^{\circ}
$$

 $\rightarrow^+ \Sigma X$: $c_x = a_x + b_x \rightarrow c \sin \gamma = a \cos \alpha - b \sin \beta$ $\uparrow^+ \Sigma Y$: $c_y = a_y + b_y \rightarrow c \cos \gamma = a \sin \alpha + b \cos \beta$ $\begin{bmatrix} 0.2588 & 0.4226 \\ -0.9659 & 0.9063 \end{bmatrix} \begin{Bmatrix} b \\ c \end{Bmatrix} = \begin{Bmatrix} 4.698 \\ 1.710 \end{Bmatrix}$

Method 3: Arbitrary axis projections

(1) $\underline{c} = \underline{a} + \underline{b}$

Given:
$$
a = 5
$$
 $\alpha = 20^{\circ}$

$$
b = ? \qquad \beta = 15^{\circ}
$$

$$
c = ? \qquad \gamma = 25^{\circ}
$$

$$
\lambda + \Sigma X_1: \quad c \cos 50^\circ = a \cos 5^\circ + 0
$$
\n
$$
c = 5 \frac{\cos 5^\circ}{\cos 50^\circ} = 7.749
$$

$$
\begin{aligned}\n \nabla^+ \Sigma Y_1: \quad 0 &= -a \cos 45^\circ + b \cos 50^\circ \\
b &= 5 \frac{\cos 45^\circ}{\cos 50^\circ} = 5.500\n \end{aligned}
$$

Notes on resolving vectors

- There are several ways to solve a system of vectors
	- You should always go for the fastest one. Wise selection comes with experience so practise!

Case study 3: Circular motion

- A particle *m* attached to one end of a rigid light rod rotates in a circle of constant radius *R* about *O* at angular speed ω.
- Determine the velocity and acceleration of the particle in polar coordinates.

Circular motion - Velocity

 $r = Re_r$ **Position**

$$
\text{Velocity} \qquad \qquad \underline{v} = R \omega \underline{e}_{\theta}
$$

Interpretation:

 m has tangential velocity Rw along \mathcal{L}_{θ}

Acceleration $\underline{a} = (-R\omega^2)\underline{e}_r + (R\alpha_{ang})\underline{e}_{\theta}$

Interpretation:

 m has radial acceleration Rw² towards O along $\frac{e}{r}$, and tangential acceleration along $\frac{e}{e}$

Notes on circular motion

- When a point conducts circular motion:
	- The velocity is tangential to the circle with direction defined by ω .
	- There are two acceleration components (tangential + normal)
		- Normal component always has direction towards the centre of rotation.
		- Tangential component is tangential to the circle with direction defined by α.

Case study 3: Circular motion example**Notting**

A particle is moving in a plane on a circular orbit with radius $R = 2$ m. Its motion is described by the angle between the particle's initial and current positions on the circular trajectory

$$
\theta(t)=t^2-3t\ \text{rad.}
$$

Calculate and describe geometrically the kinematic variables of the particle at $t = 0.5$ s.

The University of

Case study 3: Circular motion example

The particle position can be given by the arc length, a scalar function, in the following form

$$
s(t) = R\theta(t) = 2(t^2 - 3t) \text{ m}.
$$

The velocity magnitude and the tangent acceleration are given by

$$
v(t) = \dot{s}(t) = R\dot{\theta}(t) = 2(2t - 3) = 4t - 6 \text{ m/s}
$$

$$
a_t(t) = \ddot{s}(t) = R\ddot{\theta}(t) = 4 \text{ m/s}^2.
$$

 $r = Re_r$

 $v = R \omega \underline{e}_{\theta}$ $\omega = \dot{\theta}$

$$
\underline{a} = (-R\omega^2)\underline{e}_r + (R\alpha)\underline{e}_\theta \qquad \alpha = \ddot{\theta}
$$

The normal (centripetal) acceleration is

$$
a_n(t) = R\omega^2 = R(2t - 3)^2 = 8t^2 - 24t + 18 \text{ m/s}^2
$$

The University of Nottingham

In the next lecture…

Kinematics of machines:

- Classify various type of rigid body motion
- Perform velocity and acceleration analysis on simple mechanisms